Макроциклические ингибиторы вируса гепатита с
Иллюстрации
Показать всеИзобретение относится к соединениям формулы (I), его фармацевтически приемлемой соли, где каждая пунктирная линия (представленная как ) представляет собой необязательную двойную связь; Х представляет собой N или СН; R1a и R1b независимо представляют собой водород или С1-6-алкил; L представляет собой -O-; R2 представляет собой водород; R3 представляет собой водород или C1-6-алкил; R4 представляет собой хинолинил, замещенный одним, двумя или тремя заместителями, выбранными из С1-6-алкила, С1-6-алкилокси, тиазолила или пиразолила, где указанные тиазолил или пиразолил замещены на любом атоме углерода C1-6-алкилом; n равно 3, 4, 5 или 6; р равно 1 или 2. Изобретение относится к фармацевтической композиции, обладающей свойствами ингибиторов KS3/4а-протеазы HCV, содержащей носитель и в качестве активного ингредиента эффективное против вируса количество соединения формулы (I). Способ получения соединения формулы (I), в котором упомянутый способ включает в себя образование амидной связи между промежуточным продуктом (2а) и сульфониламидом (2b), как представлено на схеме, где G представляет собой группу (а). Также изобретение относится к вариантам способа получения соединения формулы (I). Технический результат - макроциклические соединения, обладающие ингибиторной активностью в отношении репликации вируса гепатита С (HCV). 5 н. и 8 з.п. ф-лы, 1 табл., 17 пр.
Реферат
Настоящее изобретение относится к макроциклическим соединениям, обладающим ингибиторной активностью в отношении репликации вируса гепатита C (HCV). Кроме того, изобретение относится к композициям, содержащим такие соединения в качестве активных ингредиентов, а также к способам получения таких соединений и композиций.
Во всем мире вирус гепатита C служит основной причиной хронического заболевания печени и стал центром внимания значительного количества медицинских исследований. HCV является представителем семейства вирусов Flaviviridae из рода hepacivirus и является близкородственным роду flavivirus, который включает в себя ряд вирусов, участвующих в заболеваниях человека, таких как вирус денге и вирус желтой лихорадки, и семейству pestivirus вирусов животных, которое включает в себя вирус диареи быков (BVDV). HCV представляет собой позитивно-смысловой, однонитевой РНК-содержащий вирус с геномом приблизительно из 9600 оснований. Геном содержит как 5'-, так и 3'-нетранслируемые области, которые воспроизводят вторичные структуры РНК, и центральную открытую рамку считывания, которая кодирует единый полипротеин длиной приблизительно из 3010-3030 аминокислот. Полипротеин содержит продукты, которые кодируются десятью генами и генерируются из полипротеина-предшественника в результате целой серии ко- и пострансляционных эндопротеолитических расщеплений, опосредованных как хозяйскими, так и вирусными протеазами. Вирусные структурные протеины включают в себя ядерный нуклеокапсидный протеин и два оболочечных гликопротеина E1 и E2. Неструктурные (NS) протеины обуславливают некоторые жизненно важные вирусные ферментативные функции (геликаза, полимераза, протеаза), а также протеины с неизвестной функцией. Репликация вирусного генома опосредована РНК-зависимой РНК-полимеразой, представленной неструктурным протеином 5b (NS5B). Было доказано, что кроме полимеразы важными для репликации РНК HCV являются функции вирусной геликазы и протеазы, обе из которых представлены бифункциональным NS3-протеином. Кроме сериновой протеазы NS3 HCV кодирует также и металлопротеиназу в NS2-области.
После первоначальной острой инфекции у большинства инфицированных развивается хронической гепатит, поскольку HCV реплицируется предпочтительно в гепатоцитах, хотя не является непосредственно цитопатическим. В частности, отсутствие достаточно интенсивного ответа T-лимфоцитов и высокая предрасположенность вируса к мутации, по-видимому, способствуют высокой скорости распространения хронической инфекции. Хронической гепатит может прогрессировать до фиброза печени, приводя на конечной стадии заболевания к циррозу печени и HCC (гепатоклеточной карциноме), что является главной причиной трансплантации печени.
Существует 6 основных генотипов HCV и более 50 подтипов, которые географически распространены неодинаково. Тип 1 HCV представляет собой генотип, преобладающий в Европе и США. Обширная генетическая гетерогенность HCV имеет важные диагностические и клинические последствия, возможно объясняющие трудности в разработке вакцин и недостаточный ответ на терапию.
Передача вируса HCV может происходить через контакт с зараженной кровью или кровепродуктами, например, после переливания крови или внутривенного введения лекарственного средства. Внедрение диагностических тестов, применяемых при скрининге крови, ведет к снижению частоты случаев HCV после переливания. Однако, с учетом медленного прогресса в отношении болезни печени в конечной стадии, существующие инфекции будут сохраняться в течение десятилетий, обеспечивая серьезное медицинское и экономическое бремя.
Современные терапии HCV основаны на (пегилированном) интерфероне-альфа (IFN-α) в сочетании с рибавирином. Такая комбинированная терапия дает в результате долговременный ответ на вирус более чем у 40% пациентов, инфицированных вирусами генотипа 1, и приблизительно у 80% пациентов, инфицированных вирусами генотипов 2 и 3. Наряду с ограниченной эффективностью в отношении HCV типа 1 такая комбинированная терапия имеет значительные побочные эффекты и плохо переносится многими пациентами. Основные побочные эффекты включают в себя гриппоподобные симптомы, гематологические нарушения и психоневрологические симптомы. Следовательно, существует необходимость в более эффективных, удобных и лучше переносимых способах лечения.
Недавно в качестве клинических кандидатов внимание привлекли два пептидомиметика-ингибитора HCV-протеазы, а именно BILN-2061, описанный в заявке WO00/59929, и VX-950, описанный в заявке WO03/87092. Ряд подобных ингибиторов HCV-протеазы также описан в научной и патентной литературе. В настоящее время уже очевидно, что продолжительное введение BILN-2061 или VX-950 способствует селекции мутантов HCV, которые резистентны к соответствующему лекарственному средству, так называемых мутантов, «ускользающих» от лекарственного средства. Такие мутанты, «ускользающие» от лекарственного средства, имеют характерные мутации в геноме HCV-протеазы, а именно D168V, D168A и/или A156S. Соответственно, чтобы обеспечить потерпевших неудачу пациентов вариантами лечения, требуются дополнительные лекарственные средства с другими характеристиками резистентности, а комбинированная терапия с помощью нескольких лекарственных средств, вероятно, станет нормой в будущем, даже для терапии первого порядка.
Кроме того, опыт работы с ВИЧ-лекарственными средствами и, в частности, с ингибиторами ВИЧ-протеазы делает акцент на том факте, что недостаточно оптимальная фармакокинетика и сложные схемы приема лекарственного средства быстро приводят к нечаянным ошибкам в соблюдении требований приема. Это, в свою очередь, означает, что 24-часовая минимальная концентрация (минимальная концентрация в плазме) соответствующих лекарственных средств при схеме приема против ВИЧ часто опускается ниже пороговых значений IC90 или ED90 в течении значительных отрезков дня. Считается, что 24-часовой минимальный пороговый уровень, составляющий, по меньшей мере, IC50, и более реалистично IC90 или ED90, имеет существенное значение для сдерживания роста мутантов, «ускользающих» от лекарственного средства. Достижение нужной фармакокинетики и метаболизма лекарственного средства для обеспечения таких минимальных пороговых уровней предъявляет строгие требования к созданию (к дизайну) лекарственных средств. Сильная природа пептидомиметиков-ингибиторов HCV-протеазы известного уровня техники с многократными пептидными связями создает фармакокинетические затруднения для эффективных схем приема лекарственного средства.
Необходимы ингибиторы HCV, которые могут преодолеть недостатки современной HCV-терапии, такие как побочные эффекты, ограниченная эффективность, появление резистентности и ошибки в соблюдении требований приема.
В заявке WO05/010029 описаны азапептидные макроциклические ингибиторы сериновой протеазы гепатита C, фармацевтические композиции, содержащие вышеупомянутые соединения, для введения субъекту, страдающему от HCV-инфекции, и способы лечения HCV-инфекции у субъекта путем введения фармацевтической композиции, содержащей упомянутые соединения.
Настоящее изобретение относится к ингибиторам репликации HCV, которые представляют собой фармакологически приемлемые альтернативы существующим ингибиторам HCV. Соединения по настоящему изобретению обладают относительно низкой молекулярной массой и легко синтезируются, исходя из исходных материалов, которые имеются в продаже или легко доступны благодаря процедурам синтеза, известным в данной области.
Настоящее изобретение относится к ингибиторам репликации HCV, которые можно представить формулой (I):
,
их N-оксидам, солям и стереоизомерам, в которой
каждая пунктирная линия (представленная как ----) представляет собой необязательную двойную связь;
X представляет собой N, CH, и, когда X содержит двойную связь, он представляет собой C;
R 1a и R 1b независимо представляют собой водород, C3-7-циклоалкил, арил, Het, C1-6-алкокси, C1-6-алкил, необязательно замещенный галогеном, C1-6-алкокси, циано, полигалоген-C1-6-алкокси, C3-7-циклоалкилом, арилом или Het; или R 1a и R 1b вместе с атомом азота, к которому они присоединены, образуют 4-6-членное насыщенное, частично ненасыщенное или полностью ненасыщенное гетероциклическое кольцо, необязательно содержащее от 1 до 3 дополнительных гетероатомов, каждый из которых независимо выбран из азота, кислорода и серы; и в которой упомянутое гетероциклическое кольцо необязательно может быть замещено одним или двумя заместителями, каждый из которых независимо выбран из группы, состоящей из галогена, C1-6-алкила, полигалоген-C1-6-алкила, гидрокси, C1-6-алкокси, полигалоген-C1-6-алкокси, C1-6-алкокси-C1-6-алкила, карбоксила, C1-6-алкилкарбонила, циано, моно- и ди-C1-6-алкиламино, арила и арил-C1-6-алкила;
L представляет собой непосредственную связь, -O-, -O-C1-4-алкандиил-, -O-CO-, -O-C(=O)-NR5a- или -O-C(=O)-NR5a-C1-4-алкандиил-;
R 2 представляет собой водород, и, когда X представляет собой C или CH, R 2 также может представлять собой C1-6-алкил;
R 3 представляет собой водород, C1-6-алкил, C1-6-алкокси-C1-6-алкил, C3-7-циклоалкил, амино, моно- или ди-C1-6-алкиламино;
R 4 представляет собой арил или насыщенную, частично ненасыщенную или полностью ненасыщенную 5- или 6-членную моноциклическую или 9-12-членную бициклическую гетероциклическую кольцевую систему, где упомянутая кольцевая система содержит один атом азота и необязательно от одного до трех дополнительных гетероатомов, выбранных из группы, состоящей из кислорода, серы и азота, и в которой остальные члены кольца представляют собой атомы углерода; где упомянутая кольцевая система необязательно может быть замещена на любом из кольцевых атомов углерода или азота одним, двумя, тремя или четырьмя заместителями, каждый из которых независимо выбран из C3-7-циклоалкила, арила, Het, -C(=O)NR5аR5b, -C(=O)R7, -C(=O)OR6a и C1-6-алкила, необязательно замещенного C3-7-циклоалкилом, арилом, Het, -C(=O)NR5аR5b, -NR5аR5b, -C(=O)R7, -NR5аC(=O)R7, -NR5аSOpR8, -SOPR8, -SOpNR5аR5b, -C(=O)OR6 или -NR5аC(=O)OR6а; и где заместители на любом из атомов углерода гетероциклического кольца также могут быть выбраны из C1-6-алкокси, гидрокси, галогена, полигалоген-C1-6-алкила, C1-6-алкилтио, оксо, циано, нитро, азидо, -NR5аR5b, -NR5аC(=O)R7, -NR5аSOpR8, -SOPR8, -SOpNR5аR5b, -С(=O)OH и NR5аC(=O)OR6а;
n равно 3, 4, 5 или 6;
p равно 1 или 2;
каждый из R 5a и R 5b независимо представляет собой водород, C3-7-циклоалкил, арил, Het, C1-6-алкил, необязательно замещенный галогеном, C1-6-алкокси, циано, полигалоген-C1-6-алкокси, C3-7-циклоалкилом, арилом или Het;
R 6 представляет собой водород, C2-6-алкенил, C3-7-циклоалкил, Het или C1-6-алкил, необязательно замещенный C3-7-циклоалкилом, арилом или Het;
R 6a представляет собой C2-6-алкенил, C3-7-циклоалкил, Het или C1-6-алкил, необязательно замещенный C3-7-циклоалкилом, арилом или Het;
R 7 представляет собой водород, C1-6-алкил, C3-7-циклоалкил или арил;
R 8 представляет собой водород, полигалоген-C1-6-алкил, C3-7-циклоалкил, арил, Het или C1-6-алкил, необязательно замещенный C3-7-циклоалкилом, арилом или Het;
арил в виде группы или части группы представляет собой фенил, нафтил, инданил или 1,2,3,4-тетрагидронафтил, каждый из которых необязательно может быть замещен одним, двумя или тремя заместителями, выбранными из галогена, C1-6-алкила, полигалоген- C1-6-алкила, гидрокси, C1-6-алкокси, полигалоген-C1-6-алкокси, C1-6-алкокси-C1-6-алкила, карбоксила, C1-6-алкилкарбонила, C1-6-алкоксикарбонила, циано, нитро, амино, моно- или ди-C1-6-алкиламино, аминокарбонила, моно- или ди-C1-6-алкиламинокарбонила, азидо, меркапто, C3-7-циклоалкила, фенила, пиридила, тиазолила, пиразолила, пирролидинила, пиперидинила, пиперазинила, 4-C1-6-алкилпиперазинила, 4-C1-6-алкилкарбонилпиперазинила и морфолинила, где морфолинильные и пиперидинильные группы необязательно могут быть замещены одним или двумя C1-6-алкильными радикалами; и фенильные, пиридильные, тиазолильные, пиразолильные группы необязательно могут быть замещены 1, 2 или 3 заместителями, каждый из которых независимо выбран из C1-6-алкила, C1-6-алкокси, галогена, амино, моно- или ди-C1-6-алкиламино;
Het в виде группы или части группы представляет собой 5- или 6-членное насыщенное, частично ненасыщенное или полностью ненасыщенное гетероциклическое кольцо, содержащее от 1 до 4 гетероатомов, каждый из которых независимо выбран из азота, кислорода и серы, необязательно конденсированное с бензольным кольцом, и где группа Het в целом необязательно может быть замещена одним, двумя или тремя заместителями, каждый из которых независимо выбран из группы, состоящей из галогена, C1-6-алкила, полигалоген-C1-6-алкила, гидрокси, C1-6-алкокси, полигалоген-C1-6-алкокси, C1-6-алкокси-C1-6-алкила, карбоксила, C1-6-алкилкарбонила, C1-6-алкоксикарбонила, циано, нитро, амино, моно- или ди-C1-6-алкиламино, аминокарбонила, моно- или ди-C1-6-алкиламинокарбонила, C3-7-циклоалкила, фенила, пиридила, тиазолила, пиразолила, пирролидинила, пиперидинила, пиперазинила, 4-C1-6-алкилпиперазинила, 4-C1-6-алкилкарбонилпиперазинила и морфолинила; где морфолинильные и пиперидинильные группы необязательно могут быть замещены одним или двумя C1-6-алкильными радикалами; и фенильные, пиридильные, тиазолильные, пиразолильные группы необязательно могут быть замещены 1, 2 или 3 заместителями, каждый из которых независимо выбран из C1-6-алкила, C1-6-алкокси, галогена, амино, моно- или ди-C1-6-алкиламино.
Изобретение дополнительно относится к способам получения соединений формулы (I), N-оксидов, аддитивных солей, четвертичных аминов, комплексов с металлами и их стереохимически изомерных форм, их промежуточных продуктов и применению промежуточных продуктов для получения соединений формулы (I).
Изобретение относится к соединениям формулы (I) как таковым, их N-оксидам, аддитивным солям, четвертичным аминам, комплексам с металлами и их стереохимически изомерным формам для применения в качестве лекарственного средства. Изобретение дополнительно относится к фармацевтическим композициям, содержащим вышеупомянутые соединения, предназначенным для введения субъекту, страдающему от HCV-инфекции. Фармацевтические композиции могут содержать комбинации вышеупомянутых соединений с другими средствами против HCV.
Изобретение также относится к применению соединения формулы (I) или его N-оксида, аддитивной соли, четвертичного амина, комплекса с металлом или их стереохимически изомерных форм для производства лекарственного средства, предназначенного для ингибирования репликации HCV. Или изобретение относится к способу ингибирования репликации HCV у теплокровного животного упомянутым способом, включающим в себя введение эффективного количества соединения формулы (I) или его N-оксида, аддитивной соли, четвертичного амина, комплекса с металлом или их стереохимически изомерных форм.
Если не указано иначе, в качестве применяемых выше и в дальнейшем используются следующие определения.
Термин «галоген» относится к фтору, хлору, брому и йоду.
Термин «полигалоген-C1-6-алкил» в виде группы или части группы, например, в полигалоген-C1-6-алкокси, определяется как моно- или полигалогензамещенный C1-6-алкил, в частности, C1-6-алкил, замещенный одним, двумя, тремя, четырьмя, пятью, шестью или более атомами галогенов, такой как метил или этил с одним или несколькими атомами фтора, например, дифторметил, трифторметил, трифторэтил. Предпочтительным является трифторметил. Также включены перфтор-C1-6-алкильные группы, которые представляют собой C1-6-алкильные группы, в которых все атомы водорода замещены атомами фтора, например, пентафторэтил. В том случае, когда к алкильной группе присоединяется более одного атома галогена, в пределах определения полигалоген-C1-6-алкила атомы галогенов могут быть одинаковыми или разными.
Применяемый здесь термин «C1-4-алкил» в виде группы или части группы определяет насыщенные углеводородные радикалы с прямой или разветвленной цепью, содержащие от 1 до 4 атомов углерода, такие как, например, метил, этил, 1-пропил, 2-пропил, 1-бутил, 2-бутил, 2-метил-1-пропил; «C1-6-алкил» охватывает C1-4-алкильные радикалы и их высшие гомологи, содержащие 5 или 6 атомов углерода, такие как, например, 1-пентил, 2-пентил, 3-пентил, 1-гексил, 2-гексил, 2-метил-1-бутил, 2-метил-1-пентил, 2-этил-1-бутил, 3-метил-2-пентил и т.п. Среди C1-6-алкильных групп интерес представляет C1-4-алкил.
Термин «C2-6-алкенил» в виде группы или части группы определяет углеводородные радикалы с прямой и разветвленной цепью, содержащие насыщенные углерод-углеродные связи и, по меньшей мере, одну двойную связь и содержащие от 2 до 6 атомов углерода, такие как, например, этенил (или винил), 1-пропенил, 2-пропенил (или аллил), 1-бутенил, 2-бутенил, 3-бутенил, 2-метил-2-пропенил, 2-пентенил, 3-пентенил, 2-гексенил, 3-гексенил, 4-гексенил, 2-метил-2-бутенил, 2-метил-2-пентенил и т.п. Среди C2-6-алкенильных групп интерес представляет C2-4-алкенил.
Термин «C2-6-алкинил» в виде группы или части группы определяет углеводородные радикалы с прямой и разветвленной цепью, содержащие насыщенные углерод-углеродные связи и, по меньшей мере, одну тройную связь и содержащие от 2 до 6 атомов углерода, такие как, например, этинил, 1-пропинил, 2-пропинил, 1-бутинил, 2-бутинил, 3-бутинил, 2-пентинил, 3-пентинил, 2-гексинил, 3-гексинил и т.п. Среди C2-6-алкинильных групп интерес представляет C2-4-алкинил.
C3-7-циклоалкил относится к циклопропилу, циклобутилу, циклопентилу, циклогексилу и циклогептилу.
C1-6-алкандиил определяет двухвалентные насыщенные углеводородные радикалы с прямой и разветвленной цепью, содержащие от 1 до 6 атомов углерода, такие как, например, метилен, этилен, 1,3-пропандиил, 1,4-бутандиил, 1,2-пропандиил, 2,3-бутандиил, 1,5-пентандиил, 1,6-гександиил и т.п. Среди C1-6-алкандиильных групп интерес представляет C1-4-алкандиил.
C1-6-алкокси означает C1-6-алкилокси, в которой C1-6-алкил имеет указанное выше значение.
Уже применяемый здесь термин (=O) или оксо образует карбонильный фрагмент, когда присоединяется к атому углерода, сульфоксидный фрагмент, когда присоединяется к атому серы, и сульфонильный фрагмент, когда два упомянутых «оксо» присоединяются к атому серы. Всякий раз, когда кольцо или кольцевая система замещена оксо-группой, атом углерода, с которым соединяется оксо-группа, представляет собой насыщенный атом углерода.
Радикал Het представляет собой гетероцикл, который указан в данном описании и формуле изобретения. Примеры Het включают в себя, например, пирролидинил, пиперидинил, морфолинил, пиперазинил, пирролил, имидазолил, оксазолил, изоксазолил, тиазинолил, изотиазинолил, тиазолил, изотиазолил, оксадиазолил, тиадиазолил, триазолил (включая 1,2,3-триазолил, 1,2,4-триазолил), тетразолил, фуранил, тиенил, пиридил, пиримидил, пиридазинил, пиразолил, триазинил и т.п. Среди радикалов Het представляют интерес те радикалы Het, которые являются ненасыщенными, в частности, радикалы, имеющие ароматический характер. Дополнительный интерес представляют те радикалы Het, которые содержат один или два атома азота.
Каждый из радикалов Het, упомянутых в данном и следующих параграфах, необязательно может быть замещен некоторым числом и типом заместителей, упомянутых в определениях соединений формулы (I) или любой из подгрупп соединений формулы (I). Некоторые из радикалов Het, упомянутых в данном и следующих параграфах, могут быть замещены одним, двумя или тремя гидрокси-заместителями. Такие гидрокси-замещенные кольца могут встречаться в виде своих таутомерных форм, содержащих кетогруппы. Например, 3-гидроксипиридазиновый фрагмент может встречаться в своей таутомерной форме 2H-пиридазин-3-она. Когда Het представляет собой пиперазинил, он предпочтительно замещен в своем 4-положении заместителем, присоединенным к 4-азоту с помощью атома углерода, например, 4-C1-6-алкилом, 4-полигалоген-C1-6-алкилом, C1-6-алкокси-C1-6-алкилом, C1-6-алкилкарбонилом, C3-7-циклоалкилом.
Представляющие интерес радикалы Het включают в себя, например, пирролидинил, пиперидинил, морфолинил, пиперазинил, пирролил, пиразолил, имидазолил, оксазолил, изоксазолил, тиазолил, изотиазолил, оксадиазолил, тиадиазолил, триазолил (включая 1,2,3-триазолил, 1,2,4-триазолил), тетразолил, фуранил, тиенил, пиридил, пиримидил, пиридазинил, пиразолил, триазинил или любые из таких гетероциклов, конденсированных с бензольным кольцом, такие как индолил, индазолил (в частности, 1H-индазолил), индолинил, хинолинил, тетрагидрохинолинил (в частности, 1,2,3,4-тетрагидрохинолинил), изохинолинил, тетрагидроизохинолинил (в частности, 1,2,3,4-тетрагидроизохинолинил), хиназолинил, фталазинил, бензимидазолил, бензоксазолил, бензизоксазолил, бензотиазолил, бензоксадиазолил, бензотиадиазолил, бензофуранил, бензотиенил.
Радикалы Het пирролидинил, пиперидинил, морфолинил, пиперазинил, 4-замещенный пиперазинил предпочтительно присоединяются с помощью своего атома азота (то есть 1-пирролидинил, 1-пиперидинил, 4-морфолинил, 1-пиперазинил, 4-замещенный 1-пиперазинил).
Как указано выше, R1a и R1b вместе с атомом азота, к которому они присоединены, образуют 4-6-членное насыщенное, частично ненасыщенное или полностью ненасыщенное гетероциклическое кольцо. Примерами таких колец являются любые из гетероциклов, упомянутых в предыдущих параграфах, которые содержат атом азота, через который кольцо может присоединяться к остатку молекулы. Конкретными примерами таких колец являются пирролидинил, пиперидинил, морфолинил, пиперазинил, 4-замещенный пиперазинил.
Как указано выше, каждый «арил» предпочтительно представляет собой фенил, замещенный указанными выше заместителями. Такое определение в равной степени применяется к арил-C1-6-алкилу, который, в частности, может представлять собой арилметил, например, бензил.
Следует отметить, что положения радикалов на любом молекулярном фрагменте, применяемом в определениях, могут находиться на таком фрагменте где угодно, при условии, что он химически стабилен. Если не указано иначе, радикалы, применяемые в определениях переменных, включают в себя все возможные изомеры. Например, пиридил включает в себя 2-пиридил, 3-пиридил и 4-пиридил; пентил включает в себя 1-пентил, 2-пентил и 3-пентил.
Когда любая переменная в любом составляющем элементе встречается более одного раза, каждое определение является независимым.
Всякий раз, когда в дальнейшем применяется термин «соединения формулы (I)» или «настоящие соединения» или подобные термины, это означает, что они включают в себя соединения формулы (I), каждую и любую из их подгрупп, их N-оксиды, аддитивные соли, четвертичные амины, комплексы с металлами и стереохимически изомерные формы. Один из вариантов осуществления изобретения включает в себя соединения формулы (I) или любую указанную здесь подгруппу соединений формулы (I), а также N-оксиды, соли в виде их возможных стереоизомерных форм. Другой вариант осуществления включает в себя соединения формулы (I) или любую из указанных здесь подгрупп соединений формулы (I), а также соли в виде их возможных стереоизомерных форм.
Соединения формулы (I) имеют несколько центров хиральности и существуют в виде стереохимически изомерных форм. Применяемый здесь термин «стереохимически изомерные формы» определяет все возможные соединения, состоящие из одинаковых атомов, связанных одинаковой последовательностью связей, но имеющие разные трехмерные структуры, которые не являются взаимно заменяемыми и которыми соединения формулы (I) могут обладать.
При ссылке на примеры, в которых для обозначения абсолютной конфигурации хирального атома в заместителе применяется (R) или (S), соединение рассматривается в целом и без отрыва заместителя.
Если не упомянуто или не указано иначе, химическое название соединения охватывает смесь всех возможных стереохимически изомерных форм, которыми упомянутое соединение может обладать. Упомянутая смесь может содержать все диастереомеры и/или энантиомеры основной молекулярной структуры упомянутого соединения. Разумеется, все стереохимически изомерные формы соединений по настоящему изобретению, как в чистой форме, так и смешанные друг с другом, подлежат включению в объем настоящего изобретения.
Чистые стереоизомерные формы соединений и промежуточных продуктов, которые здесь упоминаются, определяются как изомеры, по существу не содержащие других энантиомерных или диастереомерных форм той же самой основной молекулярной структуры упомянутых соединений или промежуточных продуктов. В частности, термин «стереоизомерно чистый» относится к соединениям или промежуточным продуктам, содержащим избыток стереоизомера, по меньшей мере, от 80% (то есть минимум 90% одного изомера и максимум 10% других возможных изомеров) вплоть до избытка стереоизомера 100% (то есть 100% одного изомера и отсутствие другого изомера), более конкретно, к соединениям или промежуточным продуктам, содержащим избыток стереоизомера от 90% вплоть до 100%, еще более конкретно, содержащим избыток стереоизомера от 94% вплоть до 100% и, наиболее конкретно, содержащим избыток стереоизомера от 97% вплоть до 100%. Термины «энантиомерно чистый» и «диастереомерно чистый» в обсуждаемом вопросе следует понимать подобным образом, однако в таком случае они относятся, соответственно, к избытку энантиомера и избытку диастереомера в смеси.
Чистые стереоизомерные формы соединений и промежуточных продуктов по данному изобретению можно получать путем применения известных в данной области процедур. Например, энантиомеры можно отделять друг от друга с помощью избирательной кристаллизации их диастереомерных солей с оптически активными кислотами или основаниями. Их примерами являются винная кислота, дибензоилвинная кислота, дитолуоилвинная кислота и камфорсульфокислота. Альтернативно, энантиомеры можно разделять с помощью хроматографических способов, применяя хиральные неподвижные фазы. Упомянутые чистые стереохимически изомерные формы также можно получать из соответствующих стереохимически чистых изомерных форм подходящих исходных материалов, при условии, что реакция осуществляется стереоспецифически. Если требуется определенный стереоизомер, предпочтительно упомянутое соединение синтезировать с помощью стереоспецифических способов получения. В таких способах преимущественно будут использоваться энантиомерно чистые исходные материалы.
Диастереомерные рацематы соединений формулы (I) можно получать по отдельности с помощью традиционных способов. Подходящими физическими способами разделения, которые преимущественно можно использовать, например, являются избирательная кристаллизация и хроматография, например, колоночная хроматография.
Для некоторых из соединений формулы (I), их пролекарств, N-оксидов, солей, сольватов, четвертичных аминов или комплексов с металлами и промежуточных продуктов, применяемых для их получения, абсолютные стереохимические конфигурации экспериментально не определялись. Специалист в данной области способен определить абсолютную конфигурацию таких соединений, применяя известные в данной области способы, такие как, например, рентгенодифракционный метод.
Также разумеется, что настоящее изобретение включает в себя все изотопы атомов, встречающихся в настоящих соединениях. Изотопы включают в себя те атомы, которые имеют одинаковый атомный номер, но разные массовые числа. В качестве обычного примера и без ограничения изотопы водорода включают в себя тритий и дейтерий. Изотопы углерода включают в себя C-13 и C-14.
Применяемый на всем протяжении данного текста термин «пролекарство» означает фармакологически приемлемые производные, такие как сложные эфиры, амиды и фосфаты, такие, что полученный в результате продукт биотрансформации производного в организме (in vivo) представляет собой активное лекарственное средство, которое определено в соединениях формулы (I). Здесь включена ссылка на публикацию авторов Goodman и Gilman (The Pharmacological Basis of Therapeutics, 8-е издание, McGraw-Hill, Int. Ed. 1992, «Biotransformation of Drugs», стр. 13-15), описывающая пролекарства в целом. Пролекарства предпочтительно обладают прекрасной растворимостью в воде, повышенной биодоступностью и в процессе обмена веществ в организме (in vivo) легко превращаются в активные ингибиторы. Пролекарства соединения по настоящему изобретению можно получать путем модификации присутствующих в соединении функциональных групп таким образом, чтобы модификации расщеплялись до исходного соединения либо с помощью обычной манипуляции, либо в организме (in vivo).
Предпочтительными являются фармацевтически приемлемые, сложноэфирные пролекарства, которые гидролизуются в организме (in vivo) и являются производными от тех соединений формулы (I), которые содержат гидрокси- или карбоксильную группу. Гидролизуемый в организме (in vivo) сложный эфир представляет собой сложный эфир, который гидролизуется в организме человека или животного с образованием исходной кислоты или спирта. Подходящие, фармацевтически приемлемые сложные эфиры для карбокси-группы включают в себя сложные C1-6-алкоксиметиловые эфиры, например, метоксиметиловый, сложные C1-6-алканоилоксиметиловые эфиры, например, сложные пивалоилоксиметиловые, фталидиловые эфиры, сложные C3-8-циклоалкоксикарбонилокси-C1-6-алкиловые эфиры, например, 1-циклогексилкарбонилоксиэтиловый; сложные 1,3-диоксолен-2-онилметиловые эфиры, например, 5-метил-1,3-диоксолен-2-онилметиловый; и сложные C1-6-алкоксикарбонилоксиэтиловые эфиры, например, 1-метоксикарбонилоксиэтиловый, которые можно образовывать в соединениях по данному изобретению на любой карбокси-группе.
Гидролизуемый в организме (in vivo) сложный эфир соединения формулы (I), содержащего гидрокси-группу, включает в себя неорганические сложные эфиры, такие как сложные эфиры фосфорной кислоты, простые α-ацилоксиалкиловые эфиры и родственные соединения, которые в результате гидролиза сложного эфира в организме (in vivo) разлагаются, давая при этом исходную гидрокси-группу. Примеры простых α-ацилоксиалкиловых эфиров включают в себя ацетоксиметокси и 2,2-диметилпропионилоксиметокси. Выбор гидролизуемого в организме (in vivo) сложного эфира, образующего группы для гидрокси, включает в себя алканоил, бензоил, фенилацетил и замещенные бензоил и фенилацетил, алкоксикарбонил (для получения сложных алкилкарбонатных эфиров), диалкилкарбамоил и N-(диалкиламиноэтил)-N-алкилкарбамоил (для получения карбаматов), диалкиламиноацетил и карбоксиацетил. Примеры заместителей на бензоиле включают в себя морфолинo- и пиперазиногруппы, соединенные с кольцевым атомом азота через посредство метиленовой группы в положении 3 или 4 бензоильного кольца.
Соли соединения формулы (I) для терапевтического применения представляют собой те соли, в которых противоион является фармацевтически приемлемым. Однако также могут найти применение соли кислот и оснований, которые не являются фармацевтически приемлемыми, например, для получения или очистки фармацевтически приемлемого соединения. Все соли, являются они фармацевтически приемлемыми или нет, включены в объем настоящего изобретения.
Разумеется, что упомянутые выше фармацевтически приемлемые аддитивные соли кислот и оснований содержат терапевтически активные, нетоксичные формы аддитивных солей кислот и оснований, которые способны образовывать соединения формулы (I). Фармацевтически приемлемые аддитивные соли кислот можно удобно получать путем обработки основной формы такой подходящей кислотой. Подходящие кислоты включают в себя, например, неорганические кислоты, такие как галогенводородные кислоты, например, хлористоводородную или бромистоводородную кислоту, серную, азотную, фосфорную и тому подобные кислоты; или органические кислоты, такие как, например, уксусная, пропановая, гидроксиуксусная (гликолевая), молочная, пировиноградная, щавелевая (то есть этандиовая), малоновая, янтарная (то есть бутандиовая), малеиновая, фумаровая, яблочная (то есть гидроксибутандиовая), винная, лимонная, метансульфоновая, этансульфоновая, бензолсульфоновая, п-толуолсульфоновая, цикламовая, салициловая, п-аминосалициловая, памовая и тому подобные кислоты.
С другой стороны, упомянутые формы солей путем обработки подходящим основанием можно преобразовывать в форму свободного основания.
Соединения формулы (I), содержащие кислотный протон, путем обработки подходящими органическими и неорганическими основаниями также можно преобразовывать в формы их аддитивных солей с нетоксичными металлами или аминами. Формы подходящих солей оснований включают в себя, например, соли аммония, соли щелочных и щелочноземельных металлов, например, соли лития, натрия, калия, магния, кальция и т.п., соли с органическими основаниями, например, соли бензатина, N-метил-D-глюкамина, гидрабамина и соли с аминокислотами, такими как, например, аргинин, лизин и т.п.
Применяемый выше термин аддитивная соль также включает в себя сольваты, которые соединения формулы (I), а также их соли способны образовывать. Такие сольваты представляют собой, например, гидраты, алкоголяты и т.п.
Применяемый выше термин «четвертичный амин» определяет соли четвертичного аммония, которые способны образовывать соединения формулы (I) при взаимодействии атома основного азота соединения формулы (I) и подходящего кватернизирующего агента, такого как, например, необязательно замещенный алкилгалогенид, арилгалогенид или арилалкилгалогенид, например, метилйодид или бензилйодид. Также можно применять другие реагенты с подходящими удаляемыми группами, такие как алкилтрифторметансульфонаты, алкилметансульфонаты и алкил-п-толуолсульфонаты. Четвертичный амин содержит положительно заряженный атом азота. Фармацевтически приемлемые противоионы включают в себя хлор, бром, йод, трифторацетат и ацетат. Выбранный противоион можно вводить, применяя ионообменные смолы.
Подразумевается, что N-оксидные формы настоящих соединений включают в себя соединения формулы (I), в которых один или несколько атомов азота окислены до так называемого N-оксида.
Следует учитывать, что соединения формулы (I) могут образовывать связи с металлами, иметь хелатообразующие и комплексообразующие свойства и, следовательно, могут существовать в виде комплексов с металлами или хелатов металлов. Разумеется, что такие металлированные производные соединений формулы (I) подлежат включению в объем настоящего изобретения.
Некоторые из соединений формулы (I) также могут существовать в своей таутомерной форме. Разумеется, такие формы, хотя и в неявной форме указанные в вышеупомянутой формуле, подлежат включению в объем настоящего изобретения.
Как упомянуто выше, соединения формулы (I) содержат несколько центров асимметрии. Для того, чтобы более эффективно ссылаться на каждый из таких центров асимметрии, будет применяться система нумерации, указанная в следующей структурной формуле.
Центры асимметрии находятся в положениях 1, 4 и 6 макроцикла, а также на атоме углерода 3' в 5-членном кольце, атоме углерода 2', когда заместитель R2 представляет собой C1-6-алкил, и на атоме углерода 1', когда X представляет собой CH. Каждый из таких центров асимметрии может встречаться в своей R- или S-конфигураци